Odorant Metabolism Catalyzed by Olfactory Mucosal Enzymes Influences Peripheral Olfactory Responses in Rats

نویسندگان

  • Nicolas Thiebaud
  • Stéphanie Veloso Da Silva
  • Ingrid Jakob
  • Gilles Sicard
  • Joëlle Chevalier
  • Franck Ménétrier
  • Olivier Berdeaux
  • Yves Artur
  • Jean-Marie Heydel
  • Anne-Marie Le Bon
چکیده

A large set of xenobiotic-metabolizing enzymes (XMEs), such as the cytochrome P450 monooxygenases (CYPs), esterases and transferases, are highly expressed in mammalian olfactory mucosa (OM). These enzymes are known to catalyze the biotransformation of exogenous compounds to facilitate elimination. However, the functions of these enzymes in the olfactory epithelium are not clearly understood. In addition to protecting against inhaled toxic compounds, these enzymes could also metabolize odorant molecules, and thus modify their stimulating properties or inactivate them. In the present study, we investigated the in vitro biotransformation of odorant molecules in the rat OM and assessed the impact of this metabolism on peripheral olfactory responses. Rat OM was found to efficiently metabolize quinoline, coumarin and isoamyl acetate. Quinoline and coumarin are metabolized by CYPs whereas isoamyl acetate is hydrolyzed by carboxylesterases. Electro-olfactogram (EOG) recordings revealed that the hydroxylated metabolites derived from these odorants elicited lower olfactory response amplitudes than the parent molecules. We also observed that glucurono-conjugated derivatives induced no olfactory signal. Furthermore, we demonstrated that the local application of a CYP inhibitor on rat olfactory epithelium increased EOG responses elicited by quinoline and coumarin. Similarly, the application of a carboxylesterase inhibitor increased the EOG response elicited by isoamyl acetate. This increase in EOG amplitude provoked by XME inhibitors is likely due to enhanced olfactory sensory neuron activation in response to odorant accumulation. Taken together, these findings strongly suggest that biotransformation of odorant molecules by enzymes localized to the olfactory mucosa may change the odorant's stimulating properties and may facilitate the clearance of odorants to avoid receptor saturation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mucosal activity patterns as a basis for olfactory discrimination: comparing behavior and optical recordings.

In over half a century numerous studies have demonstrated that different odorants produce individually different spatial patterns of neural receptor activity on the olfactory mucosa. However, the thought that these differential activity patterns could be the neural code underlying olfactory perception has not been tested directly. In the present study using operant techniques, rats were trained...

متن کامل

Enzymatic conversion of odorants in nasal mucus affects olfactory glomerular activation patterns and odor perception.

Odor information is decoded by a combination of odorant receptors, and thus transformed into discrete spatial patterns of olfactory glomerular activity. It has been found, however, that for some odorants, there are differences between the ligand specificity of an odorant receptor in vitro and its corresponding glomerulus in vivo. These observations led us to hypothesize that there exist prerece...

متن کامل

Peripheral adaptation codes for high odor concentration in glomeruli.

Adaptation is a general property of sensory receptor neurons and has been extensively studied in isolated cell preparation of olfactory receptor neurons. In contrast, little is known about the conditions under which peripheral adaptation occurs in the CNS during odorant stimulation. Here, we used two-photon laser-scanning microscopy and targeted extracellular recording in freely breathing anest...

متن کامل

Recent concepts about sense of smell, odorant receptors and physiology of olfaction- an insight

The sense of olfaction reached its zenith in development much earlier than other special senses. Olfaction is much more acute than the other senses, exhibits both high sensitivity for odours and high discrimination between them. This plays a very important role even in the social and behavioral aspects of human beings. Recent studies using molecular genetics, electrophysiology and behavioral an...

متن کامل

Neuropeptide Y Enhances Olfactory Mucosa Responses to Odorant in Hungry Rats

Neuropeptide Y (NPY) plays an important role in regulating appetite and hunger in vertebrates. In the hypothalamus, NPY stimulates food intake under the control of the nutritional status. Previous studies have shown the presence of NPY and receptors in rodent olfactory system, and suggested a neuroproliferative role. Interestingly, NPY was also shown to directly modulate olfactory responses evo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013